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Executive Summary

Since 1986, the National Oceanic and Atmospheric Administration (NOAA) Mussel Watch Program (MWP) 
has monitored the nation's coastal waters for chemical contaminants and biological indicators of water quality. 
MWP works with its associated programs, the National Bioeffects Program (BE), Great Lakes Restoration 
Initiative (GLRI), and Placed Based Assessments (PBA), to support ecosystem management nationwide. 
Together these programs conduct environmental monitoring, assessment, and research to describe the status 
and trends in the environmental quality of the nation’s estuarine and coastal waters. They utilize a sentinel-
based approach to monitoring, by collecting and analyzing sediment and bivalves (oysters and mussels) as 
surrogates for water pollution and bioaccumulation. Contaminants monitored by the MWP include legacy 
organic chemicals, such as organochlorine pesticides, industrial contaminants, fossil fuel combustion 
byproducts, and metals. In recent years, these programs have added contaminants of emerging concern 
(CECs) to their analyses including pharmaceuticals and personal care products, alternative flame retardants, 
and alkylphenol and perfluorinated compounds.

In order to answer critical questions about contaminant source and fate, the National Centers for Coastal 
Ocean Science (NCCOS) is developing new strategies to link the chemical contaminants detected in bivalves 
and tissue to potential sources of contamination. Through the development of a cross-division collaboration, a 
team of scientists explored different modeling and machine learning techniques to improve our understanding 
of the complex interactions between the environment and the chemical contaminants detected. By leveraging 
the resources of the Monitoring and Assessment Branch (Stressor Detection and Impacts division and the  
Cooperative Oxford Laboratory and Biogeography Branch (Marine Spatial Ecology Division), scientists have 
developed nationwide models that draw information from a wide variety of resources to explore factors that 
drive the fate and distribution of chemical contaminants in our coastal waters. Not only is this information 
unparalleled in its scope, the resulting models can be applied to the ever-growing database of chemical 
contaminant data in order to help describe emerging coastal contaminant observations. These types of 
analyses also help develop programmatic goals by identifying potential data gaps and demonstrating the 
power of continued cross-disciplinary collaboration.

NCCOS’ mission is to provide coastal managers with scientific information and tools needed to balance 
society’s environmental, social, and economic goals. This report supports that goal by developing adaptable 
tools that can be applied to new and existing datasets to further our understanding of the environmental 
condition of the nation’s coastal waters. By creating these tools, we are strengthening the linkage between 
science and management as well as highlighting the connectivity between the nation’s lands and its coastal 
waters.
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Introduction		

This project assessed and characterized the relationship between PAHs 
and spatial social data, and resulted in:

• Development of a contaminant forecasting model

• Identification of relevant independent variables

The driving force behind this project, and most of the research 
conducted by the National Centers for Coastal Ocean 
Sciences (NCCOS) is the recognition that humans and the 
coastal environment are intimately linked.  Humans tend to 
reside near large bodies of water. Humans also rely heavily on  
natural resources. These factors make the coastal 
environment a crucial area economically, socially and 
ecologically. However, the activities of humans create 
pressures on the quality, resilience and sustainability of the 
coastal aquatic environment. One of these pressures comes in 
the form of chemical contaminants that find their way into 
coastal aquatic systems and, in many cases, into aquatic biota.

This project utilized existing coastal contaminant data from the 
Mussel Watch Program (MWP) and Bioeffects (BE) programs, 
which characterize the distribution of chemical contaminants in 
coastal environments at different spatial scales. In addition to 
MWP and BE, current data from the Great Lakes Restoration 
Initiative (GLRI) and Place Based Assessments (PBA) are also 
included in this study. MWP is a monitoring program that uses 
bivalves and sediment to assess the status and trends of 
contaminants nationally and regionally. BE, GLRI, and PBA 
projects focus on location-based characterization of 
contaminants. MAB has accumulated more than three decades 
of data in estuaries, coastal zones, and the Great Lakes. Along 
with sustained monitoring and assessment initiatives, MAB has 
undertaken special studies in response to natural/man-made 
disasters, oil spills, and executive initiatives that were included 
in this study. MAB methods and results are characterized in 
numerous reports, book chapters, and manuscripts; however, 
this study was a national scale synoptic analysis taking full 
advantage of the depth and scale of the MAB PAH data. 

This project represents a first attempt to combine data from 
MAB projects and programs for analysis. We use an 
unsupervised machine learning technique to assess patterns 
for this data mining effort and compared it to a regression 
analysis. 

In previous reports and in response to program reviewers, 
stakeholders, and managers, spatial data was used to identify 
relationships with land use and potential management 
implications. This research effort expands on this mission to 
explore all MAB data sources, additional human dimensions 
factors, and a wider geography to both explore the dynamics 
of chemical contamination and its relationship to particular 
types of human activities. Here we utilize spatial human 
dimensions data to further characterize polycyclic aromatic 
hydrocarbon (PAH) sediment results to: 

1) Characterize the relationship between PAH sediment
contamination and human dimensions data.

2) Characterize and predict sediment PAH
concentrations nationally based on these relationships.

3) Address data gaps to increase monitoring and
assessment efficiency.

Monitoring of waters, sediments, and living tissues from coastal 
water bodies confirms that land-based chemicals are being 
released by human activities (Du et al., 2020). However, not all 
chemicals move through or persist in the environment in the 
same way. Several classes of chemical contaminants resist 
degradation and tend to bind to sediments and/or tissues, thus 
persisting in the environment for long periods of time PAHs 
resist degradation and tend to bind to sediments and/or 
tissues, thus persist in the environment for long periods of time. 
Because of their ubiquity and persistence, PAHs make a good 
case study for quantitative comparisons to human dimensions.

In 2000, the MWP investigated the relationship between 
chemical contaminant loads in shellfish at 263 sampling 
sites around the country and found a moderate correlation 
between human population size within 20km of a site and PAH 
concentrations (0.47 Spearman coefficient). Some chemicals 
showed a much stronger relationship to human population, 
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while others seemed to be more driven by ecosystem effects Modeling efforts to relate PAHs to humans
(O'Connor, T.P., 2002).  A synoptic look at national shellfish Given the positive correlation between PAH levels and 
tissue levels in 2005 showed regional variations in both levels surrounding human population and activity found in these 
of PAHs and trends, but did not investigate relationships previous studies, a variety of statistical approaches have been 
between contaminant concentration and environmental applied to quantify these relationships, following models 
surroundings (Kimbrough et al., 2008). developed to track environmental fate and transport of 

chemicals (Peng et al., 2013; Jedynska et al., 2014; and 
PAH basics Huang et al., 2017). The first set of models, the most common, 
Polycyclic aromatic hydrocarbons (PAHs) are a common is a land use regression approach. A land use regression 
anthropogenic contaminant associated with the use and model developed for a particular study in Europe explained 
incomplete combustion of organic matter such as fossil fuels 67% of benzo[a] pyrene concentrations (the most toxic of the 
(Roldán-Wong et al., 2020). They constitute a group of several PAHs), with large variation detected between study areas 
hundred compounds that share a distinct chemical structure (Jedynska et al., 2014).
containing two or more aromatic rings. PAHs are common 
components of petroleum products and can be released into More complex models, like positive matrix factorization are 
the environment through oil spills, and roadway runoff. Once in better able to assess source apportionment (Khairy and 
the aquatic environment they tend to quickly bind to sediment Lohmann, 2013). Similarly, other studies have tried regression 
particles but may also accumulate in the tissues of some tree analysis with inputs of population, vegetation types, and 
organisms, particularly oysters, mussels, and other soil composition, which explained 71% of PAH concentrations 
invertebrates (EPA, 2012). (Kubosova et al., 2009). Similar results were also yielded from 

a GIS-based correlation analysis (Merbitz et al., 2012), logistic 
Relationship of PAHs to humans regression (Papritz and Reichard, 2009), and multiple 
The presence of PAHs in the environment relates to the nearby regression (Noth et al., 2011), all of which focused on small-
human population and their fossil fuel burning practices such scale interactions including  traffic characteristics and home 
as cars, home heating, and power generation (Garner et al., heating fuel type within a few hundred meters of monitoring 
2009). The highest concentrations of PAHs bind to aquatic sites. A partial least squares regression also found a scalar 
sediments and organisms in urban areas. As one of many effect, in which PAHs in water were related to land use metrics 
examples, a comprehensive study of contaminants in the in the whole watershed while sediment PAH levels were 
Chesapeake Bay found that concentrations of PAHs in related to local sources (Uher et al., 2016).
sediments were significantly higher in designated industrialized 
watersheds as compared to rural and agricultural watersheds Regression methodologies fitted to the input indicators and 
(Hartwell and Hameedi, 2007). scale of the study is the most common and most effective 

choice in modeling the relationship of PAH levels (Hoek et al., 
The general trend of higher PAH concentrations in water 2008). Variation over time and space remains a challenge in all 
bodies near urban areas may be more directly related to of these examples of predicting contaminant levels. However, 
specific factors about their urban construction. For example, several of these statistical models performed well enough 
PAH levels in sediment, oligochaetes, and grass shrimp in to categorize PAH values in sediment as over a threshold 
South Carolina were found to be related to impervious surface of concern, either in need of further testing and source 
cover in the surrounding watershed, with urban and identification or in need of remediation for residential purposes.
industrialized creeks showing the highest PAH levels (Garner 
et al., 2009). Population dynamics outside of land use are also The possible models that are applicable for testing and linking 
related to PAH levels, such as the presence of industrial farms, the relationship of PAHs to land use and demographic factors 
roads, and commercial business facilities (Huang et al., 2017), also depends on the parameters of the data to be modeled, 
as well as traffic (Jedynska et al., 2014). The meaning of especially when using secondary data for a purpose differing 
“urban” can also be defined differently depending on the from that of the original study design. For the purpose of this 
distinctive features considered. The U.S. Census Bureau study,  the MWP monitoring data was collected to assess the 
(Census, 2020)  defines an urban area as a place with more status and trends of contaminants along coastal areas, as well 
than 50,000 people. A group of chemists developed an as the Great Lakes Basin, but does not lend itself to hypothesis 
urbanization indicator, which was correlated to PAH testing. The BE, GLRI and PBA often use hypothesis testing 
concentrations, consisting of residential building age, techniques at the study level and share sediment sampling 
population density, road density, and distance from the urban techniques, but were not designed for all data to be combined 
centers (Peng et al., 2013). Overall, the relationships between from decades of studies. Machine learning techniques are well 
PAHs and the above variables as discussed in the literature, suited in finding patterns in the data and identifying gaps 
point to the need for a set of indicators that includes human across the program, even though data might be generated 
population size and composition, and some metric of how that from different sample designs (e.g. monitoring versus place 
population builds and powers the spaces in which it lives. based).
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Methods 

Sediment measurements derived from multiple studies over more than three 
decades were combined and analyzed to gain a better perspective on PAH 
distribution. Consistent methodologies of the various NS&T programs over time 
allow for this study to take place. 

Sampling sites
This study included MAB data from the continental US, Alaska, 
Hawaii, and Puerto Rico, with over 4000 samples. Due to the 
spatial limitations of human-dimensions data, only a subset of 
samples from the continental US were used (3722 samples). 
This data set included some monitoring data from the same 
site collected over many years (in a few rare cases, from 
Mussel Watch’s inception in 1986 to current day) (Figure 1).

The human dimensions data needed to be aggregated to a 
chemical neighborhood, which can be thought of as an area

where human activities within some distance of a sample 
would be expected to increase the PAH levels in sediment. 
One approach to defining this neighborhood is to use circular 
buffers around the sample site, while another is to 
incorporate hydrologic flow that might carry PAHs in the 
primary direction of water flow. Both neighborhood types 
should be relatively small in scale (less than 20 km 
according to Peng et al., 2013). As such, buffers from 1-5 km  
were created for each sample site to capture the strongest 
chemical signal. Buffers of 1, 2, 3, 4, and 5 km are shown in 
Figure 2.

Figure 1. NS&T continental US PAH sediment sampling sites.
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Dependent Variable: PAH levels
Methods for collecting sediment samples for testing followed 
those described in Apeti et al., 2012. Briefly, the primary 
method of collection for sediment uses a Ponar grab. Once the 
grab sampler was aboard the boat, an acetone rinsed spatula 
was used to collect the top layer of sediment (2-3 cm). The 
sediment was then homogenized, placed in a glass jar and set 
on ice for shipping to a contract chemistry laboratory. Specific 
methods for the analytical measurement of PAH values 
followed those found in Kimbrough et al. 2007. The suite of 
individual PAH analytes and the analytical methods applied to 
measuring them have changed over time to include a broader 
suite of individual PAHs.  

Table 1. Parent compounds used for the total PAH concentration.

Acenaphthene Benzo[a]pyrene Benzo[g,h,i]perylene Fluorene
Acenaphthylene Benzo[e]pyrene Chrysene Indeno[1,2,3-c,d]pyrene
Anthracene Dibenzo[a,h]anthracene Phenanthrene
Benz[a]anthracene Fluoranthene Pyrene

In order to include data from multiple studies over decades, a 
core set of PAHs common to all sites were summed to 
represent PAH magnitude (Table 1). Sediment grain size data 
was not available for all of the samples. This made it 
impossible to distinguish between samples relatively high in 
sand, where PAHs are unlikely to accumulate in high 
concentrations due to low available surface area, and sites 
with extremely low concentrations due to lower PAH inputs. 
As a result, samples with summed PAH values in the lowest 
1% of all PAH concentrations were removed from the study 
analysis in order to decrease uncertainty due to 
measurement error.

Figure 2. Example of hydrologic unit and buffers used to characterize land use at each NS&T sediment site.

Benzo[b]fluoranthene
Benzo[k]fluoranthene
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Figure 3. The USGS Land Use/Land Cover data set (2016) used for independent variables at each PAH sediment site. 

Independent Variables
PAHs are released to the environment during use and 
combustion of fossil fuels, both from natural and 
anthropogenic sources, and are highly persistent in the 
environment especially in organic sediments in rivers, lakes, 
and estuaries. In the US, fossil fuel combustion is a primary 
source of PAHs, and it is considered a nonpoint source 
pollutant because it accumulates through multiple diffuse 
sources across the landscape. 

With these dynamics in mind and examples from other PAH 
models, we determined the following list of environmental 
variables (factors) to test in our model: impervious surface, 
land use/land cover, boat ramps and marinas, population, 
parking lot cover, road cover, petroleum industry locations, 
wastewater treatment facilities, and basic demographics. 
Definitions and methods for spatial interpretation of each of 
these variables are presented here; readers should refer to 
the original source for interactive maps. We utilized the 
latest available data release for each variable.

Land use/land cover data (Figure 3) came from the Multi-
Resolution Land Characteristics (MRLC) consortium in the 
form of the National Land Cover Database (NLCD; https://
www.mrlc.gov/). This NLCD data is derived from Landsat 
imagery and ancillary geospatial datasets, and utilizes a 
multi-source integrated training decision-tree to establish 
land use cover classifications (Yang et al, 2018) . These 
land use classifications are based on a modified Anderson 
classification approach with a spatial resolution for the 
nation at 30 m. The Anderson classification system was 
initially designed to provide a uniform and standardized 
classification of remotely sensed data into land use cover 
types for federal agencies (a full description of this approach 
can be found at https://pubs.usgs. gov/pp/0964/ report.pdf; 
Anderson, 1977). For this analysis, we used the 2016 data 
which covers the contiguous US, but data is not yet 
available in the same resolution for Alaska, Hawaii, and 
Puerto Rico, hence our decision to model only the 
contiguous US. Percent cover of each land use type was 
calculated for each analytical buffer.
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Figure 4. Percent impervious surfaces used in this study as an independent variable for each PAH sediment site.

summarized for each study geography with the Summarize 
Within tool in ArcGIS into a point count, and normalized to a 
per area basis.

Population data came from the Oak Ridge National 
Laboratories Land Scan global population data set (https://
andscan.ornl.gov/) (Figure 5).  At approximately 1 km (30″ X 
30″) spatial resolution, it represented an ambient population 
(average over 24 hours) distribution.  Here we use the 2018 
data release. LandScan consists of census data converted 
from summaries by administrative boundaries and combined 
with primary geospatial data into raster grid cells. Population 
distribution from this data is a combination of locally adaptive 
models that are tailored to match the data conditions and 
geographical nature of each individual country and region. 

Data on impervious surfaces (Figure 4) for this analysis were
also derived from the MRLC (https://www.mrlc.gov/). This 30-
meter pixel resolution data sets includes impervious surfaces
as a percentage of developed land covering the entire
contiguous United States. The percentage of impervious
surfaces were calculated for Euclidean buffer distances, as
well as Hydrologic Unit Code (HUC) polygons using an area l
weighted approach.

Boat ramps and marina locations were derived from the Office 
of Response and Restoration Environmental Sensitivity
Index (ESI) socioeconomic layer (available https://response.
restoration.noaa.gov/resources/environmental-sensitivity-
indexesi-maps). Point locations for boat ramps and marinas 
were selected for each state ESI, merged, and then 
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Road length was calculated for each geography from the 
Census Bureau Tiger/Line files for roads (https://www. 
census.gov/geographies/mapping-files/time-series/geo/tiger-
geodatabase-file.html). Each type of road was treated the same 
(i.e. no differentiation of freeways from neighborhood roads), 
and total miles of road within each study geography was 
calculated using the Summarize Within tool in ArcGIS, then 
normalized to a length per area density measure.

Petroleum industry sources were derived from the Homeland 
Infrastructure Foundation-Level Data portal maintained by 
Department of Homeland Security. Points for each of the 
following categories were included: petroleum terminals, 
petroleum ports, oil refineries, oil and natural gas wells, oil and 
natural gas platforms, natural gas storage facilities, natural gas 
processing plants, natural gas market hubs, and natural gas 
import/export sites. A count of petroleum industry sites within 
each study geography was calculated using the Summarize 
Within tool in ArcGIS and normalized to a per area basis.

Figure 5. The LandScan population distribution coverage used as an independent variable for each PAH sediment site.

For this analysis we used daytime and nighttime population 
estimates aggregated to buffer distances and HUCs around 
sampling sites. Daytime and nighttime population modeled 
estimates were created using census data, input data from the 
BLS, and InfoUSA databases to estimate worker distributions 
and flows as well as school children and business travel 
patterns, both during working daytime hours and evening 
hours.

Parking lot cover data came from the USGS Wall- to-wall 
Anthropogenic land-use Trends (NWALT) database (https://
www.sciencebase.gov/catalog/item/5c0ea593e4b0c53ecb2 
af59f) from the most recent data release, 2012. The data has 
a 60 m resolution, with each pixel attribute representing the 
estimated percentage of the pixel covered with parking lot. 
The average percent cover constituting parking lots within 
each geography was calculated using the Summarize Within 
tool in ArcGIS (raster version).
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Independent Variable Adjusted r2

Impervious surface 5 0.28
Road density 5 0.27
High intensity development 3 0.27
Medium intensity development 5 0.25
Parking cover 3 0.2
Nighttime population 5 0.2
Low intensity development 5 0.14
Daytime population 5 0.13
Developed open space 5 0.04
Petroleum facility density 1 0.03
Boat ramp density 1 0.02

For demographics, each study site was assigned to the geographies best modeled PAH levels by lowest AIC/highest r-
nearest Census block group using the Near tool in ArcGIS. squared value in the Exploratory Regression tool. In order to 
From there, data were joined on total population (Census accommodate the very skewed distribution of PAH 
2010), median age (Census 2010), percent female (calculated concentrations (see results), the cube root of PAH values were 
from gender counts in Census 2010), number of elderly (65 used as the dependent variable. Although there were significant 
and over) citizens (2019, ESRI demographics), and median independent variables, most of these variables explained a low 
income (2019, ESRI demographics). amount of variability in the PAH data. The three significant 

variables with the highest r2 values were road density (adjusted 
Modeling r2 = 0.27), impervious surface (adjusted r2 = 0.28), and high 
For the modeling of PAHs in sediment on a national scale, intensity development in a 3 km buffer (adjusted r2 = 0.27) 
spatial models were considered to account for regional (Table 2). Note this exercise was to choose the most related 
autocorrelation of both the dependent and independent buffer distance; highly correlated variables were removed in the 
variables in the model using spatial regression and Random spatial models.
Forest modeling tools within ArcGIS Pro 2.3. Data cleaning 
involved clipping the data set geographically to the contiguous Once there was one specific measure for each category of 
US, as the territories, Hawaii, and Alaska have different or independent variable, a Poisson regression was used to further 
nonexistent data sets for many of the explanatory variables. specify the model (Generalized Linear Regression tool), 

beginning with a model including all theorized independent 
Model specification occurred by assessing the fit of non-spatial variables: median age, median household income, percent 
models. For each sampling site, the independent variables female, percent white, ramp density (1 km), parking lot cover  
were derived from a set of eight geographies of increasing (3 km), road density (5 km), petroleum facility density (1 km), 
area around the sample site (except for Census-based data, high density development (3 km), medium density development 
for which demographics from the nearest block group were (5 km), low density development (5 km), developed open  
used). The first step was to determine which of these space (5 km), impervious surface (5 km), daytime population 

Buffer distance (km)

Table 2. Comparison of r2 values for various sized spatial buffers and independent variables from regression 
analysis of PAH concentrations.
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Stepwise, the variable with the highest VIF was removed and 
the model re-run. Road density and nighttime population were 
removed accordingly and the final model explained 36.5% of 
the variance (p = 0), all independent variables were 
significant, and no variables with a VIF above 7.5 (Table 3). 
The model is spatially auto-correlated and is used to specify 
a Geographically Weighted Regression (GWR).

For comparison, a Forest-based Classification and 
Regression model was also run using the same explanatory 
variables as the GWR with high VIF variables removed with 
100 trees and 25% of data withheld for validation (Breiman 
2001). The Random Forest is an ensemble model that uses 
multiple decision trees with different subsets of data. The use 
of multiple small decision trees results in a model that does 
not need to be pruned.

Variable Coefficient StdError z-Statistic Probability VIF
Median Age 0.049 0.000031 1583 <0.00001 1.73
Median Household Income -0.000003 0 -471 <0.00001 1.46
Percent Female -4.31 0.0035 -1230 <0.00001 1.13
Percent White -1.68 0.0035 -1291 <0.00001 1.61
Ramp Density -0.23 0.00038 -606 <0.00001 1.15
Mean Parking 0.00056 0.000001 678 <0.00001 2.60
Land Use - High Density Development 1.63 0.0038 432 <0.00001 5.72
Land Use - Open Developed 0.3 0.0079 38 <0.00001 2.62
Land Use - Low Density Development 3.22 0.0057 564 <0.00001 4.09
Land Use - Medium Density Development 6.52 0.0043 1535 <0.00001 5.42
Daytime Population 0.000012 0 316 <0.00001 1.87
Petrochemical Facility Density 0.46 0.00089 512 <0.00001 1.10
Intercept 7.59 0.0019 4059 <0.00001 n/a

(5 km), and nighttime population (5 km). Poisson regression 
was used because of the skewed distribution of PAH values, 
with a vast majority of sites having low PAH concentrations. 
The initial model with all dependent variables included 
explained 42.6% of the variance (p = 0, AIC = 37775857) 
with all variables significant (p = 0 for all), but had eight high 
VIF scores (above 7.5). Impervious surface (127.1) was 
found to be multicollinear with road density (VIF = 20.6), high 
density development (VIF = 11.3), medium density 
development (VIF = 36.1), low density development (VIF = 
13.2), and nighttime population (VIF = 10.2), so it was 
dropped in the next round of the model.

The  model, after removing impervious surface, explained 
41.8% of the variance (p = 0). All independent variables were 
significant (p = 0) and had resulted in four variables with a 
high VIF (≥ 7.5). 

Table 3. Statistics for the final regression model.
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Results 
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There were 3722 individual records of PAH measurements, 
with 56 of the records missing at least one of the 
independent variables due to the location of sampling sites. 
As a result, 3666 sites were used in the national sediment 
model, with a total of 15 selected independent variables 
that are theoretically connected to PAH levels found in the 
coastal environment. The continental national averages and 
variances for each variable are summarized in Table 4, and 
the clusters of PAH values are shown in Figure 6. 
Regression analysis between PAH concentration and 
selected independent variables appear in Figure 7. 

Due the uneven distribution of sampling sites at the national 
scale and spatial autocorrelation of both PAH levels and 
independent variables, several modeling approaches were 
tested to see which performed best in this context. These 
comparisons were meant to answer three primary modeling 
questions:

1. How does a regression-based approach compare with
machine learning techniques, specifically Random
Forest when including human dimensions dependent
variables?

2. Does a categorical data set improve performance over
continuous data?

3. Does a spatial or tabular conceptualization of
dependent variables perform better?

Variable Mean Standard Deviation Range Units
PAH concentration 3674 33642 0 - 1219089 ng/g dry weight
Median Age 40.09 8.36 13.2 - 79.7 Years
Median Household Income 83558 41686 10331 - 200001 Dollars
Percent Female 0.51 0.05 0.03 - 0.88 proportion
Percent White 0.402 0.26 0.0012 - 1 proportion
Ramp Density (1 km) 0.21 0.66 0 - 8.6 Ramps/sq.km.
Mean Parking (3 km) 265 361 0 - 2013 Percent x 100
Petroleum Facility Density (1 km) 0.05 0.21 0 - 3.5
Road Density (5 km) 3.83 3.46 0 - 18.4
High Intensity Development (3 km) 0.06 0.1 0 - 0.58
Medium Intensity Development (5 km) 0.08 0.09 0 - 0.43
Low Intensity Development (5 km) 0.07 0.07 0 - 0.39
Developed Open Space (5 km) 0.05 0.05 0 - 0.38
Daytime Population (5 km) 1875 4434 0 - 74227
Nighttime Population (5 km) 1277 2308 0 - 32400

Figure 6. Box plot characterizing PAH clusters.

Count
km/km2

proportion
proportion
proportion
proportion
People
People

Table 4. Variables included in modeling runs with summary statistics.
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Figure 7. Regression results for relationships between PAH concentration and independent variables.
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Distance Band 459654
Deviance explained by the global model 
(non-spatial)

0.2889

Deviance explained by the local model 0.5996
Deviance explained by the local model vs. 
global model

0.437

AIC 2.62E+07
Sigma-squared 1.21E+09
Sigma-squared MLE 1.20E+09

3532

Geographically Weighted Regression vs. Random Forest model. The distance band required to run the GWR is 460 km,
The GWR model explained 60.0% of the variance, which is which is similar to the distance between Richmond, VA, and
a 43.7% increase over the non-spatial Poisson regression New York City, NY, making the neighborhood of analysis for
(Table 5). The GWR, however, would not run because of local each point a broad geographic region. This makes sense given
multicollinearity when including all the variables specified that PAH dynamics vary by region based on attributes such
through standard regression; this should be considered a as development patterns, coal tar sealant sourcing for roads,
major shortfall of the GWR approach even though it performs and population density. The regions have different correlations
better than the non-spatial regression model. Therefore, those with each of the dependent variables, an example of which is
variables (all Census-based variables) that depicted high shown in Figure 8 depicting the coefficients associated with
levels of multicollinearity were dropped in order to complete the high density development within a 3 km buffer. An increase in

impervious surface in the Mid-Atlantic or Gulf Coast, predicted
a bigger increase in PAHs than it would for sampled areas such 

Table 5: Model results for Geographically Weighted Regression. as the West or Great Lakes Coasts.
Final model: PAH level = mean parking + land use + population.

In terms of model performance, the predicted values versus
actual values of each site are shown in Figure 9, with an r2

value of 0.23. Given the highly skewed distribution of the PAH
data, including a few very high sediment readings that highly
influence the regression, this poor performance indicates that
a geographically weighted regression (GWR) approach is not
adequate for the data.

A Random Forest Model using the same dependent variables
as the GWR (determined through a model specification process
and constraints due to local multicollinearity) yielded a model
that explained 47.5% of variation when using 100 trees. The list
of variable importance is in Table 6.

Figure 8. Coefficients for high density development in the GWR model.

Effective degrees of freedom
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Figure 9. PAH values (x-axis) compared to predicted values from Geographically Weighted Regression (y-axis). 

Figure 10. Random Forest average residual values.
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Variable Importance
Land Use - High Intensity 
Development

0.24

Mean Parking Cover 0.23
Land Use - Open Developed 0.16

Land Use - Medium Intensity 
Development

0.14

Land Use - Low Intensity 
Development

0.12

Daytime Population 0.11

Table 6. Variable Importance from Random Forest model 
using same variables as those in the Geographically 
Weighted Regression model.

Variable Importance
Percent White 0.16
Mean Parking Cover 0.15
Land Use - High Intensity Development 0.15
Land Use - Low Intensity Development 0.12
Daytime Population 0.11
Land Use - Medium Intensity 
Development

0.09

Median Age 0.08
Percent Female 0.04
Median Household Income 0.04
Land Use - Open Developed 0.04
Petrochemical Facility Density 0.00
Boat Ramp Density 0.00

Variable Importance
Petrochemical Facility Density 0.11
Boat Ramp Density 0.11
Land Use - High Intensity 
Development

0.11

Land Use - Medium Intensity 
Development

0.10

Daytime Population 0.09
Mean Parking Cover 0.09
Land Use - Low Intensity 
Development

0.08

Land Use - Open Developed 0.08
Percent Female 0.06
Median Age 0.06
Median Household Income 0.06
Percent White 0.05

Table 7. Variable importance for the continuous version of the 
Random Forest model.

Table 8. Variable importance for the categorical version of the 
Random Forest model.

Table 9. Classification of PAH values into clusters based on 
actual values and values predicted by the categorical 
Random Forest model.

Actuals

Pr
ed

ic
te

d

Cluster 1 2 3 4
1 147 104 31 16
2 66 197 94 27
3 6 52 129 34
4 0 1 12 16

There was little variation in how well the Random Forest model 
performed over space, as shown by the map of model 
residuals in Figure 10.

In terms of model performance, the predicted versus actual 
values of PAH concentrations are as follows for points included 
in the training, with an r2 = 0.94. For testing values withheld 
(25%), performance was highly variable, ranging from 0.04 to 
0.91 over 10 repetitions. 

Random Forest: Categorical vs. Continuous Data
Since Random Forest can incorporate all of the variables from 
the data reduction process into the model, this comparison will 
return to the full set of independent variables specified from 
the Generalized Linear Regression: parking cover, daytime 
population, high density development, medium density 
development, low density development, developed open 
space, percent white, median household income, median age, 
density of petrochemical facilities, boat ramp density, and 
percent female. The continuous data model explains 42.3% of 
the variance with 100 trees. The regression diagnostic show 
predicted versus actual values of training data with an r2 = 0.95 
(p = 0) and predicted versus actual values of validation data 
ranging from an r2 of 0.02 to 0.90 (p = 0). The variables are 
ranked in Table 7.  

Using a categorical version of Random Forest yielded very 
different results. PAH values were clustered using Mclust, a 
Bayesian-based tool (Fraley & Raftery, 1999), into 4 clusters 
with 1191, 1533, 882, and 116 sites. The cluster number 
was input as the dependent variable for the Random Forest 
based on the classification tool, run with compensation for 
sparse categories. The resulting model had a mean squared 
error (MSE) of 42.2 with 100 trees. As shown in Table 8, the 
variable importance is more well spread across the different 
independent variables, with accuracy of the predicted versus 
actual values of validation data ranging from r2 of 0.62 to 0.89.

As expected, given the variability in both measurement 
capacity and independent variables at low PAH levels, 
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Daytime Population 0.15
Parking Cover 0.15
Land Use Land Cover 0.15
Boat Ramps 0.10
Petroleum Facilities 0.10
Median Age 0.09
Median Household Income 0.09
Percent Female 0.09
Percent White 0.09

Table 11. Classification of PAH Values into clusters based on 
actual values and values predicted by a Random Forest 
model using select independent variables.

Actuals

Pr
ed

ic
te

d

Cluster 1 2 3 4
1 82 15 78 101
2 59 44 101 178
3 23 8 93 97
4 2 3 6 18

Table 12. Importance of variables from Random Forest 
model with clustered PAH values and all potential 
independent variables

Variable Importance %
Land Use - High Intensity Development 0.09
Land Use - Medium Intensity Develop-
ment

0.09

Petroleum Facility Density 0.08
Mean Parking Cover 0.08
Boat Ramp Density 0.08
Impervious Surface 0.08
Daytime Population 0.07
Nighttime Population 0.07
Land Use - Low Intensity 
Development

0.07

Median Age 0.05
Median Household Income 0.05
Land Use - Open Developed 0.05
Percent White 0.04
Percent Female 0.04

Table 13. Classification of PAH values into clusters based 
on actual values and values predicted using Random 
Forest with all potential independent variables. 

Actuals

Pr
ed

ic
te

d

Cluster 1 2 3 4
1 166 66 42 11
2 84 166 104 29
3 15 34 133 39
4 0 1 10 18

performance was best in cluster 4 (the highest PAH values), 
with predicted versus actual values for training and validation 
data at 0.92 and 0.89, respectively. The confusion matrix is 
shown in Table 9.

Overall, the continuous model explained about the same 
variance in the data, but was far less consistent in predictive 
values when evaluated with validation data. Repeated runs 
of the model are possible in order to identify versions of the 
model with best predictive power. 

The categorical model offered more consistent performance 
when evaluated with validation data and performed very well 
when applied to the highest PAH values. Therefore, depending 
on the application of the model and where one needs to 
prioritize performance and consistency, either version of the 
model may be preferable.

Spatial vs. Tabular Conceptualization of Dependent 
Variables
Dependent variable inputs for the spatial version used in 
the Random Forest tool can also be the raw data files and 
represent a different way of conceptualizing the dependent 
variables. The tool calculates the distance to points and lines  
and uses the underlying individual raster data, leaving the 
model to be more spatially precise, but less integrative of the 
nearby land use. The resulting model had a MSE of 66 with 
100 trees. Unlike the tabular conception of the independent 
variables, the performance of the model on training data was

Table 10. Random Forest spatial model variable importance.

Variable Importance %

similar to performance on test data (0.57 - 0.71 across all four 
clusters, highest in cluster 1). Using the same independent 
variables as in the cluster model above. Table 10 shows 
the importance values in a spatial model, and Table 11 the 
confusion matrix. Given the importance of performance for 
cluster 4 (the highest PAH values), the spatial version of this 
model is not preferred.

Data Reduction Strategies
Random Forest is widely used due to its inherent protections 
against overfitting. However, some debate exists whether one 
should perform data reduction before running Random Forest 
in order to improve performance, even if both options are 
statistically valid. The results thus far have all relied upon some 
data reduction to remove multicollinear independent variables. 
For comparison, Table 12 shows the clustered, tabular 
Random Forest model with all possible variables included; 
MSE error is 37.5 at 100 trees.
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1 6.07 40.5
2 2.08 13.8
3 1.71 11.4
4 1.02 6.8
5 0.98 6.5
6 0.88 5.8
7 0.62 4.1
8 0.51 3.4
9 0.4 2.7

10 0.34 2.2
11 0.19 1.3
12 0.1 0.7
13 0.06 0.4
14 0.04 0.3
15 0.01 0.04

Component Importance 
(%)

6 9
7 8
13 8
10 7
15 7
8 7
11 7
3 7
5 6
2 6
12 6
14 6
9 6
4 6
1 5

Actuals

Pr
ed

ic
te

d

Cluster 1 2 3 4
1 146 80 49 23
2 99 158 86 41
3 18 56 98 49
4 3 1 8 17

Results depicted in the confusion matrix (Table 13) looks removing the effects of multicollinearity and an added 
similar to the regression- reduced model, however accuracy for protection against overfitting (even though Random Forest 
validation data was slightly better for the highest PAH cluster protects against overfitting fairly well on its own). A PCA of the 
(0.92 versus 0.89) but slightly different for the lowest three independent variables yields the 15 dimensions depicted in 
clusters (between 0.67 and 0.78, versus 0.62 to 0.76). Figure 11.

Another type of data reduction that is more comprehensive in The first four components all have eigenvalues greater than > 1 
its statistical approach is a Principal Components Analysis and together explain 75% of the variance in the independent 
(PCA). Since many of the independent variables in this study variable data set (see Table 14). These first four components 
are both theoretically and mathematically correlated, data together include at least some portion of each of original 
reduction in the form of a PCA is a common approach for independent variables, suggesting the value of including all 

variables in this statistical analysis.

Figure 11. Contribution of each independent variable to PCA 
components.

Table14. Variance explained by each of the PCA components

Dimension  Eigenvalue  Variance (%)

Table 15. Variable importance for Random Forest 
run on PCA components.

Table 16. Classification of PAH sites into clusters based 
on actual PAH values and PAH values predicted based on 
a Random FOrest model with PCA components.
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However, the requirement for all variables to be populated 
suggest that it is necessary to reduce the complexity of the 
data inputs.

In this case, a PCA in which all 15 resulting components are 
kept yields the variable importance as shown in table 15, with 
38.9 MSE at 100 trees and 0.61 - 0.87 accuracy for each of 
the four clusters (highest for the highest PAH cluster). The 
confusion matrix is in Table 16. The performance is very similar 
in performance to the unreduced model, but more difficult to 
interpret. Both the PCA and regression dimension reduction 
methods yielded similar results to those calculated from the 
Random Forest models. This introduces several 
considerations in model specification such as prioritizing which 
cluster performs the best and how easily interpretable the 
results need to be. Given the importance of model 
performance for the highest cluster of PAH levels, the non-
reduced model will be used for the predictive map in the next 
section.

Figure 12. Predicted high PAH sediment levels as modeled for the centroid of each watershed. Cluster 4 depicts high levels.

Predictive map
Using the best performing model structure (no data reduction, 
categorical chemical data, and using 5 km buffers to determine 
a neighborhood around each sampling site) and existing 
sampling sites as a training data set, we used Random Forest 
predictive capabilities to predict the level of PAH concentration 
at the centroid of each watershed (or HUC8). Random Forest 
was run 50 times for validation, with the highest performing 
iteration used for predictions. The final model had an MSE 
of 36.9 and accuracy of 0.90 for the highest cluster of PAHs. 
Figure 12 depicts the centroids that are expected to be in 
cluster 4 (high PAH levels) highlighted in large gray circles; the 
centroids predicted to have less PAHs are shown in small 
circles. The predicted high PAH levels are primarily (but not 
entirely) surrounded by urban land use and present primarily in 
Southern California and seaside New York, both of which boast 
high commercial vessel port activity. In Southern California, this 
prediction is also reflected in regional monitoring efforts (Du et 
al 2020).
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Discussion 

Of the modeling options conducted in this study, categorical 
Random Forest produced the most reliable and accurate 
results. When evaluating the Random Forest models, choosing 
between continuous and categorical versions impacted model 
reliability. The continuous variables produced a more reliable 
set of importance rankings but predicted  PAH values with far 
less accuracy, especially for sites with PAH values in the 
highest cluster. When sites with high PAH levels are 
prioritized, it is suggested that the categorical model would be 
better suited. However, if the research question is to 
understand the dynamics of each independent variable 
individually, the decision may fall toward continuous modeling 
without using PCA for data reduction. Furthermore, if one is 
really interested in just one of the independent variables, the 
GWR might have something more to offer - many of the 
demographic variables were locally collinear. For example, 
road cover in a region similarly shows regional trends that 
correspond with regional road sealant sources.

This modeling effort depended entirely on secondary data 
by design, as it was meant to help prioritize future chemical 
monitoring efforts and deliver some context to the spatial 
dynamics observed in the nationwide PAH monitoring effort. 
As a result, the independent variables were a best estimate of 
the underlying demographic and land use factors that influence 
PAH contamination, but were at times inexact and not 
comprehensive. For example, studies in China link particular 
types of business and industry to PAH contamination 
(Huang et al 2017), but lack of a similar comprehensive 
nationwide business database limited the ability for this effort 
to focus on business sources. Wastewater treatment outflows 
are also known sources of many contaminants, including 
PAHs, but georeferenced wastewater facilities generally locate 
the facility, not the outfall, and these can be a significant 
distance from one another. There is also no national database 
of wastewater facilities, and so would have required merging 

different data sets or scaling down to smaller models with more 
complete regional collections. In addition, as it pertains to 
chemical data site locations, the priorities for sampling have 
changed over time and there is not equal representation across 
the nation or the types of land use surrounding the sites. For 
example, the historic focus on industrial contaminants means 
there are few sites surrounded by agricultural land uses.

For other environmental variables assessed in this study, such 
as population, several data options addressed these attributes, 
and we had to choose between the available options based on 
attributes of the data and spatial resolution. To measure land 
use and land cover data, we used the MRLC NLCD 2016 
coverage because of its spatial consistency across 
the entire country, and the need to be consistent with similar 
work conducted by the USGS (MRLC 2020). LandScan was 
chosen as a population data set due to the potential to tease 
and extract daytime, and nighttime population estimates, and 
because of the high degree of spatial accuracy. Additionally we 
utilized two data sets that are easily available for both 
government agency and public use.

While the modeling approach using all independent variables in 
a PCA followed by Random Forest worked best for this 
particular study, this may not be the case for all data sets 
and contexts. Decisions concerning data reduction need to be 
part of structuring the theoretical approach to modeling this 
type of data. Random Forest is renowned for its ability to avoid 
overfitting and adding PCA to the workflow increases the 
model’s overall ability to handle large numbers of independent 
variables that are likely related to one another. However, even 
depending on mathematical approaches to avoid duplication, 
one must still decide which data sources to seek out according 
to what we know about the modeling context. In this case, PAH 
sources are well documented, as is the environmental fate and 
behavior of PAHs once introduced to the environment. 
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In determining which independent variables to include, we 
looked to other PAH modeling efforts and source tracings in 
order to prioritize which data were required. This is a 
fundamentally subjective effort, and requires deep knowledge 
of both available data sets and the current state of the science. 

Additionally, dimension reduction prior to modeling efforts were 
conducted in this study was based on a concept of the “local 
environment” around each sampling site in the form of a buffer. 
We tested differently sized circular buffers and HUC system 
boundaries to see which captured the best relationship 
between the variables used in this modeling exercise. Many, if 
not most, attempts at this type of modeling included a water 
systems approach, and therefore the best relationship between 
the variables tends to be hydrologic boundaries. However, 
buffers can be logistically easier to work with and may perform 
better for quick-to-settle chemicals, such as PAHs where 
previous studies have found the immediate environment makes 
the most difference in sediment-based contaminant level (Uher 
et al., 2016). One can, in theory, include multiple 
conceptualizations as separate independent variables that will 
be grouped together via PCA if related. However, we tested this 
ahead of time to limit the number of interactions that might be 
happening at any given time. Only then did the final round of 
dimension reduction occur via PCA.

This modeling effort utilized PAHs because of their ubiquity and 
persistence in aquatic environment, but few chemical 
contaminants share these convenient attributes, raising the 
question of how well this modeling approach will apply to 
chemicals with different environmental behavior and presence. 

First, additional variables are likely needed to better match 
their sources. For example, a climate and/or weather variable 
may be needed to capture the dynamics of shorter-lived 
contaminants that are deposited into the coastal ecosystem 
following rain events. Depending on the environmental fate 
and transport behavior of different types of chemicals, a 
different size or shape of buffer may perform better and so 
this step in dimension reduction remains necessary. And 
finally, for less ubiquitous chemicals, nationwide data may be 
unavailable; a set of regional models may be necessary in 
order to remove large spatial gaps in the chemical data. In 
addition to limitations surrounding how to process various 
types of chemical data, there is likely more variability in 
human dimensions than we are able to capture utilizing 
secondary data derived from sources not designed explicitly 
for this purpose (such as the Census). 

At the end of the modeling exercise here, it is helpful to step 
back and remember why the model is important: to help 
predict areas with high levels of PAHs that have not been 
consistently monitored over time and researchers, managers, 
and policy makers can focus future monitoring efforts. Even 
the best model presented here has limited accuracy for the 
lower level PAH clusters. Several decisions made in the 
modeling process obscure the direct relationships between 
individual independent variables and PAH level. However, the 
accuracy for the highest cluster is high enough to feel 
confident using it in future sampling plans and the effects of 
individual variables do not need to be teased apart since they 
are all easily available, nationwide data sources that can be 
reliably deployed in future model runs and studies. 
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